

US006846399B2

(12) United States Patent Shepodd et al.

(10) Patent No.: US 6,846,399 B2 (45) Date of Patent: Jan. 25, 2005

(54)	CASTABLE THREE-DIMENSIONAL		
	STATIONARY PHASE FOR ELECTRIC		
	FIELD-DRIVEN APPLICATIONS		

(75) Inventors: **Timothy J. Shepodd**, Livermore, CA (US); **Leroy Whinnery**, **Jr.**, Danville,

CA (US); William R. Even, Jr.,

Livermore, CA (US)

(73) Assignee: Sandia National Laboratories,

Livermore, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 568 days.

(21) Appl. No.: 09/796,762

(22) Filed: Feb. 28, 2001

(65) **Prior Publication Data**

US 2001/0008212 A1 Jul. 19, 2001

Related U.S. Application Data

(63)	Continuation-in-part of application No. 09/310,465, filed on
	May 12, 1999, now abandoned.

	_	
(51)) Int. Cl. ⁷	 C01N 27/447
131	, m. c.	 GUIN 4//44/

(56) References Cited

U.S. PATENT DOCUMENTS

4,522,953 A * 6/1985 Barby et al. 521/64

605, 606, 615; 521/64, 146, 149

5,021,462 A	6/1991	Elmes 521/63
5,135,627 A	8/1992	Soane 204/182.8
5,334,310 A	8/1994	Frechet 210/198.2
5,431,807 A	7/1995	Frechet 210/198.2
5,453,185 A	9/1995	Frechet 210/198.2
5,569,364 A	* 10/1996	Hooper et al 204/455
5,728,457 A	3/1998	Frechet 428/310.5
6,117,326 A	* 9/2000	Schure et al 210/635

OTHER PUBLICATIONS

Peters et al., "Molded Rigid Polymer Monoliths as Separation Media for Capillary Electrochromatography", *Analytical Chemistry*, 69, 3646–3649, 1997.

Primary Examiner—Nam Nguyen Assistant Examiner—Brian L. Mutschler (74) Attorney, Agent, or Firm—Donald A. Nissen

(57) ABSTRACT

A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.

12 Claims, 1 Drawing Sheet

^{*} cited by examiner